Saturday, January 30, 2021

About NodeMCU ESP8266

Insight Into ESP8266 NodeMCU Features & Using It With Arduino IDE



NodeMCU ES8266



ESP8266 Pinouts





Arduino IDE software Download link:-https://www.arduino.cc/en/software

To begin, we’ll need to update the board manager with a custom URL. Open up Arduino IDE and go to File > Preferences. Then, copy below URL into the Additional Board Manager URLs text box situated on the bottom of the window:



My VIDEO Link PART 1 :-https://youtu.be/4IGuEKSMMSk





IoT Controlled LED using BLYNK and ESP8266 (Node MCU)
Part 2





  • BLYNK APP download from google play store in your Android Device


LEDs Circuit diagram


LEDs circuit connection




MY VIDEO Link  Part 2:-https://youtu.be/xX03ty_SmwU









 

Wednesday, January 27, 2021

Introduction of Power Transmission Methods


Intro:- Power transmission is process to transmit motion from one shaft to another shaft by using some connection between them like Belts, Ropes, Chains and Gears.

Mainly two types of connectors are used :- 
  1. Flexible (Ropes)
  2. Rigid (Chain, Gears and Shafts)


"In this topic we are only discuss about Flexible Transmission methods"

1. Ropes and Belts are used when Driving and Driven shafts at a large distances (10 to 30 m)
so, this types of power  transmission methods are used.

  • Belts and Ropes are non positive power transmission methods ( due to sliping of Rope and Belts on a rotating Pulleys)

Types of Power Transmission in Belts and Ropes

1. OPEN  BELTS SYSTEM :- Iopen belt drive, belt proceeds from top of one pulley to the top of other pulley without crossing.

  •  In open belt drive, driving shaft and driven shaft rotate in same direction.



 2. CROSS BELTS SYSTEM:- In crossed belt drive, belt proceeds from top of one pulley to the bottom of other pulley and thus crosses itself.

  •  In Cross Belt drive, driving shaft and driven shaft rotate in opposite direction.


Velocity Ration Formula 

  V= r  ω ( r is the radius of pully and ω is the angular velocity)
 ω = 2πN/60 ( N is the no. of revolution per min.)

V1/V2 = r1.ω1/r2.ω2  =  r1.N1/r2.ω2 = 2r1.N1/ 2r2.ω2 (twice of pulley radius is equal to Diameter of pulley)

D1.N1/D2/N2 =  D1/D2 = N2/N1


Material Regarding

1. Flat Belts:- Leather, Canvas, Rubber. This is used when driving and Driven shafts at a large distance(10 m).
  • Linear velocity of power transmission in Flat Belts is 22 m/sec.
2. V Belts:- In V belts the cross section of belts of belt in V shape, generally made up of rubber.
This is used when driving and Driven shafts at a distance is (4 m)
                        
  • Linear velocity of power transmission in V Belts is 24 m/sec.



3. Ropes:- Ropes are generally made up of Cotton & Wires (steel). It is used when driving and driven shaft at  a distance 30 m.

  • Linear velocity of power transmission in Ropes is 3 m/sec.

Types of Pulleys

Pulleys are interconnected with both Driving and Driven shaft. 
 
1. Ideal Pulley has no mass and no friction. The tension of ideal cord that runs through an ideal pulley in the same on both the sides of the pulley.

IDEAL PULLEY


2. Intermediate Pulley:- Those pulleys are interconnected.


3. Guide Pulley:- A pulley for directing or changing the line of motion of belt an idler.

I,II,III are idler pulley used to Guide belts at certain angels





we will Discuss about Topic of Gears for Power transmission systems in next part.


























Monday, January 25, 2021

Difference between BUCK AND BOOST converter

 BUCK vs BOOST

Introduction:- Both BUCK & BOOST converters are DC to DC converters with voltage and current at the output compare to input. There are two types of topologies.

Inverting and Non Inverting. In inverting type Output voltage polarity is different than Input voltage
where as non inverting type Output voltage polarity is same as input voltage. They are used switching regulators which use switching elements[ typically one or two MOSFETs(PNP)} and energy storage device such as INDUCTOR to efficiently regulate 
inputs voltages to LOWER or HIGH output voltage.


BUCK Converters



1. A BUCK  converter is a step down converters.
2. It is step down input voltage and step up input current.
3. Hence, Vin(BT) > Vout & Iin(current) < I out.



BOOST Converters


1. A BOOST converters is a step up converter.
2. It step up input voltage and step down input current.
3. Hence,Vin  > Vout and Iin < I out.




Thursday, January 21, 2021

Home Made 4*4 Racing Vehicle

 4*4 Racing Vehicle



Power Drive Unit

It a set of motor and gear to reduce/increase RPM and  Torque






Receiver and Transmitter circuit diagram

Transmitter

Receiver


TRANSMITTER CODES:-//SUBSCRIBE "TESTFEST"
// 6 Channel Transmitter |
  #include <SPI.h>
  #include <nRF24L01.h>
  #include <RF24.h>
  const uint64_t pipeOut = 0xE9E8F0F0E1LL;   //IMPORTANT: The same as in the receiver 0xE9E8F0F0E1LL | 
  RF24 radio(9, 10); // select CE,CSN pin | 
  struct Signal {
  byte throttle;
  byte pitch;
  byte roll;
  byte yaw;
  byte aux1;
  byte aux2;

//#define SW1 D4;
//#define SW2 D5;

};
  Signal data;
  void ResetData() 
{
  data.throttle = 0;   // Motor stop | Motor Kapalı (Signal lost position | 
  data.pitch = 127;    // Center | Merkez (Signal lost position | 
  data.roll = 127;     // Center | merkez (Signal lost position | 
  data.yaw = 127;     // Center | merkez (Signal lost position | 
  data.aux1 = 0;    // Center | merkez (Signal lost position | 
  data.aux2 = 0;    // Center | merkez (Signal lost position | 
}
  void setup()
{
  //Start everything up
  radio.begin();
  radio.openWritingPipe(pipeOut);
  radio.setAutoAck(false);
  radio.setDataRate(RF24_250KBPS);
  radio.setPALevel(RF24_PA_HIGH);
  radio.stopListening(); //start the radio comunication for Transmitter | 
  ResetData();

//  pinMode(SW1,INPUT_PULLUP);
//  pinMode(SW2,INPUT_PULLUP);
 
}
  // Joystick center and its borders | 
  int mapJoystickValues(int val, int lower, int middle, int upper, bool reverse)
{
  val = constrain(val, lower, upper);
  if ( val < middle )
  val = map(val, lower, middle, 0, 128);
  else
  val = map(val, middle, upper, 128, 255);
  return ( reverse ? 255 - val : val );
}
  void loop()
{
  // Control Stick Calibration 
  // Setting may be required for the correct values of the control levers. | :Kontrol kolların doğru değerleri için ayar gerekebilir.
  data.throttle = mapJoystickValues( analogRead(A0), 13, 512, 1024, true );  // "true" or "false" for signal direction | 
  data.roll = mapJoystickValues( analogRead(A3), 0, 516, 1024, true );      // "true" or "false" for servo direction | 
  data.pitch = mapJoystickValues( analogRead(A2), 0, 526, 1024, false );     // "true" or "false" for servo direction | 
  data.yaw = mapJoystickValues( analogRead(A1), 0, 502, 1024, false );       // "true" or "false" for servo direction | 

 data.aux1 =  digitalRead(4); 
 data.aux2 =  digitalRead(5);    

//  int SWITCH[2];

//  SWITCH[0] = digitalRead(SW1);
//  SWITCH[1] = digitalRead(SW2);
//    
//  radio.write(&switch,sizeof(Switch));
  
  
  radio.write(&data, sizeof(Signal));
  
  
  
}



RECEIVER CODES:-//  6 Channel Receiver | 
//  PWM output on pins D2, D3, D4, D5, D6, D7 

#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>
#include <Servo.h>

int ch_width_1 = 0;
int ch_width_2 = 0;
int ch_width_3 = 0;
int ch_width_4 = 0;
int ch_width_5 = 0;
int ch_width_6 = 0;




Servo ch1;
Servo ch2;
Servo ch3;
Servo ch4;
Servo ch5;
Servo ch6;

struct Signal {
byte throttle;      
byte pitch;
byte roll;
byte yaw;
byte aux1;
byte aux2;
};

Signal data;

const uint64_t pipeIn = 0xE9E8F0F0E1LL;
RF24 radio(9, 10); 

void ResetData()
{
// Define the inicial value of each data input. | 
// The middle position for Potenciometers. (254/2=127) |
data.roll = 127;   // Center | 
data.pitch = 127;  // Center | 
data.throttle = 13; // Motor Stop | 
data.yaw = 127;   // Center | 
data.aux1 = 0;   // Center |
data.aux2 = 0;   // Center |
}

void setup()
{
  //Set the pins for each PWM signal | Her bir PWM sinyal 
  ch1.attach(2);
  ch2.attach(3);
  ch3.attach(4);
  ch4.attach(5);
  ch5.attach(6);
  ch6.attach(7);

   

  //Configure the NRF24 module
  ResetData();
  radio.begin();
  radio.openReadingPipe(1,pipeIn);
  radio.setAutoAck(false);
  radio.setDataRate(RF24_250KBPS);
  radio.setPALevel(RF24_PA_HIGH);
  radio.startListening(); //start the radio comunication for receiver | 
  pinMode(6,OUTPUT);
 

}

unsigned long lastRecvTime = 0;

void recvData()
{
while ( radio.available() ) {
radio.read(&data, sizeof(Signal));
lastRecvTime = millis();   // receive the data | 
}
}

void loop()
{
recvData();
unsigned long now = millis();
if ( now - lastRecvTime > 1000 ) {
ResetData(); // Signal lost.. Reset data | 
ch_width_4 = map(data.yaw,      0, 255, 1000, 2000);     // pin D5 (PWM signal)
ch_width_2 = map(data.pitch,    0, 255, 1000, 2000);     // pin D3 (PWM signal)
ch_width_3 = map(data.throttle, 0, 255, 1000, 2000);     // pin D4 (PWM signal)
ch_width_1 = map(data.roll,     0, 255, 1000, 2000);     // pin D2 (PWM signal)
ch_width_5 = map(data.aux1,       0, 1, 1000, 2000);     // pin D6 (PWM signal)
ch_width_6 = map(data.aux2,     0, 1, 1000, 2000);     // pin D7 (PWM signal)

//ch_width_5 = map(data.aux1,
//int AUX[2];
//radio.read(&,sizeof(Signal));

//if([CH_width_5]==0){
//  digitalWrite(CH_width_5,1);
//}
//if([CH_width_5]==1){
//  digitalWrite(CH_width_5,0);
//}
//  if([CH_width_6]==0){
//  digitalWrite(CH_width_6,1);
//  }
//
//  if([CH_width_6]==1){
//  digitalWrite(CH_width_6,0);
//  }

  
// Write the PWM signal | PWM 
ch1.writeMicroseconds(ch_width_1);
ch2.writeMicroseconds(ch_width_2);
ch3.writeMicroseconds(ch_width_3);
ch4.writeMicroseconds(ch_width_4);
ch5.writeMicroseconds(ch_width_5);
ch6.writeMicroseconds(ch_width_6);
}






Relay Circuit Diagram



MY YOUTUBE VIDEO Link:-https://youtu.be/H50VzS396ao



Drive 4x4 RC

My Youtube video link:-https://youtu.be/rdlo0gBBVK0

Friday, January 15, 2021

Li-Ion Battery

 "Science behind the Lithium-Ion battery"

About Lithium-Ion battery

A Lithium Ion or Li -ion battery is a type of rechargeable battery. Li-ion batteries are commonly used in portable electronics devices like Mobiles, Laptops, Drones and Electric vehicles etc.

A prototype Li-ion battery was developed by Akira Yoshino in 1985, based on earlier research by John GoodenoughM. Stanley WhittinghamRachid Yazami and Koichi Mizushima during the 1970s–1980s, and then a commercial Li-ion battery was developed by a Sony and Asahi Kasei team led by Yoshio Nishi in 1991.


The Four Components of Li-Ion battery:-

1. Anode.

2. Cathode.

3. Electrolyte.

4. Separator.

Every single component of a Li-Ion battery is essential as it cannot function when on of the component is missing. 


▶“Cathode” determines the capacity and voltage of a Li-ion battery

 A Lithium-ion battery generates electricity through chemical reactions of lithium.

This is why, of course, lithium is inserted into the battery and that space for lithium is called “cathode”.

However, since lithium is unstable in the element form, the combination of lithium and oxygen, lithium oxide is used for cathode.

The material that intervenes the electrode reaction of the actual battery just like lithium oxide is called ”active material”.

In other words, in the cathode of a Li-ion battery, lithium oxide is used as an active material.

If you take a closer look at the cathode, you will find a thin aluminium foil used to hold the frame of the cathode coated

with a compound made up of active material, conductive additive and binder.

The active material contains lithium ions, the conductive additive is added to increase conductivity;

and the binder acts as an adhesive which helps the active material and the conductive additive to settle well on the aluminium substrate.

 Cathode plays an important role in determining the characteristics of the battery

as the battery’s capacity and voltage are determined by active material type used for cathode.

The higher amount of lithium, bigger the capacity; and the bigger potential difference between cathode and anode, higher the voltage.

The potential difference is small for anode depending on their type but for cathode, the potential difference is relatively high in general.

As such, the cathode plays a significant role in determining the voltage of the battery. 


▶ ”Anode” sends electrons through a wire

 Just like the cathode, the anode substrate is also coated with active material.

The anode’s active material performs the role of enabling electric current to flow through the external circuit while allowing reversible absorption/emission of lithium ions released from the cathode.

 When the battery is being charged, lithium ions are stored in the anode and not the cathode.

At this point, when the conducting wire connects the cathode to the anode (discharge state),

lithium ions naturally flow back to the cathode through the electrolyte,

and the electrons (e-) separated from lithium ions move along the wire generating electricity.



For anode graphite which has a stable structure is used, and the anode substrate is coated with active material,

conductive additive and a binder.

Thanks to graphite’s optimal qualities such as structural stability, low electrochemical reactivity,

conditions for storing much lithium ions and price, the material is considered suitable to be used for anode.


▶ “Electrolyte” allows the movement of ions only

 When explaining about cathode and anode, it was mentioned that lithium ions move through the electrolyte

and electrons move through the wire.

This is the key in enabling the use of electricity in a battery.

If ions flow through the electrolyte, not only can’t we use electricity but safety will be jeopardized.

 

Electrolyte is the component which plays this important role.

It serves as the medium that enables the movement of only lithium ions between the cathode and anode.

For the electrolyte, materials with high ionic conductivity are mainly used so that lithium ions move back and forth easily. 

The electrolyte is composed of salts, solvents and additives.

The salts are the passage for lithium ions to move, the solvents are organic liquids used to dissolve the salts,

and the additives are added in small amounts for specific purposes. 

Electrolyte created in this way only allows ions to move to the electrodes and doesn’t let electrons to pass.

In addition, the movement speed of lithium ions depends on the electrolyte type.

Thus, only the electrolytes that meet stringent conditions can be used.


▶ ”Separator”, the absolute barrier between cathode and anode

 While the cathode and anode determine the basic performance of a battery, electrolyte and separator determine the safety of a battery.  

The separator functions as a physical barrier keeping cathode and anode apart.

It prevents the direct flow of electrons and carefully lets only the ions pass through the internal microscopic hole.

Therefore, it must satisfy all the physical and electrochemical conditions.

Commercialized separators we have today are synthetic resin such as polyethylene (PE) and polypropylene (PP).


So far, we have looked at the four main components which determine the performance of Li-ion batteries.

Currently, Samsung SDI is strengthening R&D of new materials for the enhancement of battery performance

while ceaselessly continuing its efforts to improve the performance of existing materials and core technologies.

Through high capacity/high efficiency Li-ion battery innovation,

Samsung SDI seeks to take the lead in the future battery industry which will enrich the lives of human beings all across the world.  


Overall Reaction in Li-Ion Battery

 

The following equations exemplify the chemistry.

The positive electrode (cathode) half-reaction in the lithium-doped cobalt oxide substrate is

The negative electrode (anode) half-reaction for the graphite is

The full reaction (left to right: discharging, right to left: charging) being

The overall reaction has its limits. Over discharging supersaturates lithium cobalt oxide, leading to the production of lithium oxide, possibly by the following irreversible reaction:

Overcharging up to 5.2 volts leads to the synthesis of cobalt(IV) oxide, as evidenced by x-ray diffraction

In a lithium-ion battery, the lithium ions are transported to and from the positive or negative electrodes by oxidizing the transition metal, cobalt (Co), in Li
1-x
CoO
2
 from Co3+
 to Co4+
 during charge, and reducing from Co4+
 to Co3+
 during discharge. The cobalt electrode reaction is only reversible for x < 0.5 (x in mole units), limiting the depth of discharge allowable. This chemistry was used in the Li-ion cells developed by Sony in 1990.

The cell's energy is equal to the voltage times the charge. Each gram of lithium represents Faraday's constant/6.941, or 13,901 coulombs. At 3 V, this gives 41.7 kJ per gram of lithium, or 11.6 kWh per kilogram of lithium. This is a bit more than the heat of combustion of gasoline, but does not consider the other materials that go into a lithium battery and that make lithium batteries many times heavier per unit of energy.


How does recharging a lithium-ion battery work?

When the lithium-ion battery in your mobile phone is powering it, positively charged lithium ions (Li+) move from the negative anode to the positive cathode. They do this by moving through the electrolyte until they reach the positive electrode. There, they are deposited. The electrons, on the other hand, move from the anode to the cathode.





When you charge a lithium-ion battery, the exact opposite process happens. The lithium ions move back from the cathode to the anode. The electrons move from the anode to the cathode.
Battery during Charging


About GEARS

  GEARS Modes of Power Transmission. No Intermediate link or Connector. Transmit motion by directed contact. Two bodies have Rolling or Slid...